Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Metab Syndr Relat Disord ; 21(3): 141-147, 2023 04.
Article in English | MEDLINE | ID: covidwho-2246253

ABSTRACT

Background: There is a limited understanding of molecular and cellular events that derive disease progression in patients with corona virus disease 2019 (COVID-19). Receptor for advanced glycation end products (RAGE) is hyperactive in development and complications of several diseases by mediating oxidative stress and inflammation in the body. The present study aims to explore activation of RAGE signaling in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with preexisting comorbidities, including hypertension and or diabetes. Methods: A total of 442 subjects with COVID-19, were recruited for the study. The molecular mechanism of Covid-19 was explored in blood cells, using ELISA, RT- PCR and Western blot. Results: Enhanced levels of ligands of RAGE, including AGEs, S100, and high-mobility group box-1 (HMGB-1) were observed in COVID-19 patients with severe diseases; however, their level was significantly higher in COVID-19 patients with comorbidities compared to COVID-19 patients without comorbidities. The expression of RAGE in parallel to ligands accumulation was significantly increased in patients with severe disease and comorbidities compared to COVID-19 patients with severe disease without comorbidities. The expression of downstream effectors of RAGE, including STAT-3 and nuclear factor kappa B (NF-kB), was also enhanced and their activity was increased in COVID-19 patients with comorbidities. Levels of inflammatory and oxidative stress biomarkers were markedly increased in COVID-19 patients with comorbidities. Conclusions: We conclude that upregulated RAGE axis plays critical role, to worsen the severity of the SARS-CoV-2 infection in patients with preexisting comorbidities and partly explain inflammatory and oxidative stress storm in severe COVID-19 patients.


Subject(s)
COVID-19 , Humans , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Ligands , COVID-19/complications , SARS-CoV-2/metabolism , NF-kappa B/metabolism
2.
Nutrients ; 14(13)2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1974857

ABSTRACT

Since the 1980s, chronic kidney disease (CKD) affecting all ages has increased by almost 25%. This increase may be partially attributable to lifestyle changes and increased global consumption of a "western" diet, which is typically energy dense, low in fruits and vegetables, and high in animal protein and ultra-processed foods. These modern food trends have led to an increase in the consumption of advanced glycation end products (AGEs) in conjunction with increased metabolic dysfunction, obesity and diabetes, which facilitates production of endogenous AGEs within the body. When in excess, AGEs can be pathological via both receptor-mediated and non-receptor-mediated pathways. The kidney, as a major site for AGE clearance, is particularly vulnerable to AGE-mediated damage and increases in circulating AGEs align with risk of CKD and all-cause mortality. Furthermore, individuals with significant loss of renal function show increased AGE burden, particularly with uraemia, and there is some evidence that AGE lowering via diet or pharmacological inhibition may be beneficial for CKD. This review discusses the pathways that drive AGE formation and regulation within the body. This includes AGE receptor interactions and pathways of AGE-mediated pathology with a focus on the contribution of diet on endogenous AGE production and dietary AGE consumption to these processes. We then analyse the contribution of AGEs to kidney disease, the evidence for dietary AGEs and endogenously produced AGEs in driving pathogenesis in diabetic and non-diabetic kidney disease and the potential for AGE targeted therapies in kidney disease.


Subject(s)
Renal Insufficiency, Chronic , Uremia , Animals , Diet , Diet, Western , Glycation End Products, Advanced/metabolism , Kidney/metabolism , Receptor for Advanced Glycation End Products/metabolism , Renal Insufficiency, Chronic/metabolism , Uremia/complications
3.
Int J Mol Sci ; 21(15)2020 Jul 27.
Article in English | MEDLINE | ID: covidwho-1934096

ABSTRACT

In physiology and pathophysiology the molecules involved in blood cell-blood cell and blood cell-endothelium interactions have been identified. Platelet aggregation and adhesion to the walls belonging to vessels involve glycoproteins (GP), GP llb and GP llla and the GP Ib-IX-V complex. Red blood cells (RBCs) in normal situations have little interaction with the endothelium. Abnormal adhesion of RBCs was first observed in sickle cell anemia involving vascular cell adhesion molecule (VCAM)-1, α4ß1, Lu/BCAM, and intercellular adhesion molecule (ICAM)-4. More recently RBC adhesion was found to be increased in retinal-vein occlusion (RVO) and in polycythemia vera (PV). The molecules which participate in this process are phosphatidylserine and annexin V in RVO, and phosphorylated Lu/BCAM and α5 laminin chain in PV. The additional adhesion in diabetes mellitus occurs due to the glycated RBC band 3 and the advanced glycation end-product receptors. The multiligand receptor binds advanced glycation end products (AGEs) or S100 calgranulins, or ß-amyloid peptide. This receptor for advanced glycation end products is known as RAGE. The binding to RAGE-activated endothelial cells leads to an inflammatory reaction and a prothrombotic state via NADPH activation and altered gene expression. RAGE blockade is a potential target for drugs preventing the deleterious consequences of RAGE activation.


Subject(s)
Cell Adhesion Molecules/metabolism , Endothelial Cells/metabolism , Erythrocytes/metabolism , Neoplasm Proteins/metabolism , Polycythemia Vera/metabolism , Retinal Vein Occlusion/metabolism , Cell Adhesion , Endothelial Cells/pathology , Erythrocytes/pathology , Glycation End Products, Advanced/metabolism , Humans , Polycythemia Vera/pathology , Receptor for Advanced Glycation End Products/metabolism , Retinal Vein Occlusion/pathology , Thrombosis/metabolism , Thrombosis/pathology
4.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article in English | MEDLINE | ID: covidwho-1884211

ABSTRACT

The receptor of advanced glycation end products (RAGE) is a receptor that is thought to be a key driver of inflammation in pregnancy, SARS-CoV-2, and also in the comorbidities that are known to aggravate these afflictions. In addition to this, vulnerable populations are particularly susceptible to the negative health outcomes when these afflictions are experienced in concert. RAGE binds a number of ligands produced by tissue damage and cellular stress, and its activation triggers the proinflammatory transcription factor Nuclear Factor Kappa B (NF-κB), with the subsequent generation of key proinflammatory cytokines. While this is important for fetal membrane weakening, RAGE is also activated at the end of pregnancy in the uterus, placenta, and cervix. The comorbidities of hypertension, cardiovascular disease, diabetes, and obesity are known to lead to poor pregnancy outcomes, and particularly in populations such as Native Hawaiians and Pacific Islanders. They have also been linked to RAGE activation when individuals are infected with SARS-CoV-2. Therefore, we propose that increasing our understanding of this receptor system will help us to understand how these various afflictions converge, how forms of RAGE could be used as a biomarker, and if its manipulation could be used to develop future therapeutic targets to help those at risk.


Subject(s)
COVID-19 , Glycation End Products, Advanced , Carrier Proteins , Female , Glycation End Products, Advanced/metabolism , Humans , NF-kappa B/metabolism , Pregnancy , Receptor for Advanced Glycation End Products/metabolism , Receptors, Immunologic/metabolism , SARS-CoV-2
5.
Cells ; 11(8)2022 04 12.
Article in English | MEDLINE | ID: covidwho-1785543

ABSTRACT

Advanced glycation end-products (AGEs) constitute a non-homogenous, chemically diverse group of compounds formed either exogeneously or endogeneously on the course of various pathways in the human body. In general, they are formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amine groups of nucleic acids, proteins, or lipids, followed by further rearrangements yielding stable, irreversible end-products. In the last decades, AGEs have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes and diseases, such as diabetes, cancer, cardiovascular, neurodegenerative diseases, and even infection with the SARS-CoV-2 virus. They are recognized by several cellular receptors and trigger many signaling pathways related to inflammation and oxidative stress. Despite many experimental research outcomes published recently, the complexity of their engagement in human physiology and pathophysiological states requires further elucidation. This review focuses on the receptors of AGEs, especially on the structural aspects of receptor-ligand interaction, and the diseases in which AGEs are involved. It also aims to present AGE classification in subgroups and to describe the basic processes leading to both exogeneous and endogeneous AGE formation.


Subject(s)
COVID-19 , Diabetes Mellitus , Glycation End Products, Advanced/metabolism , Humans , Receptor for Advanced Glycation End Products/metabolism , SARS-CoV-2
6.
JCI Insight ; 7(2)2022 01 25.
Article in English | MEDLINE | ID: covidwho-1649609

ABSTRACT

Cellular and molecular mechanisms driving morbidity following SARS-CoV-2 infection have not been well defined. The receptor for advanced glycation end products (RAGE) is a central mediator of tissue injury and contributes to SARS-CoV-2 disease pathogenesis. In this study, we temporally delineated key cell and molecular events leading to lung injury in mice following SARS-CoV-2 infection and assessed efficacy of therapeutically targeting RAGE to improve survival. Early following infection, SARS-CoV-2 replicated to high titers within the lungs and evaded triggering inflammation and cell death. However, a significant necrotic cell death event in CD45- populations, corresponding with peak viral loads, was observed on day 2 after infection. Metabolic reprogramming and inflammation were initiated following this cell death event and corresponded with increased lung interstitial pneumonia, perivascular inflammation, and endothelial hyperplasia together with decreased oxygen saturation. Therapeutic treatment with the RAGE antagonist FPS-ZM1 improved survival in infected mice and limited inflammation and associated perivascular pathology. Together, these results provide critical characterization of disease pathogenesis in the mouse model and implicate a role for RAGE signaling as a therapeutic target to improve outcomes following SARS-CoV-2 infection.


Subject(s)
Benzamides/pharmacology , COVID-19 Drug Treatment , COVID-19 , Lung , Receptor for Advanced Glycation End Products , SARS-CoV-2/physiology , Signal Transduction/drug effects , Virus Replication/drug effects , Animals , COVID-19/genetics , COVID-19/metabolism , Disease Models, Animal , Lung/metabolism , Lung/virology , Mice , Mice, Transgenic , Receptor for Advanced Glycation End Products/antagonists & inhibitors , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism
7.
Int Immunopharmacol ; 104: 108502, 2022 03.
Article in English | MEDLINE | ID: covidwho-1641351

ABSTRACT

BACKGROUND: SARS-CoV-2 infection can lead to the abnormal induction of cytokines and a dysregulated hyperinflammatory state that is implicated in disease severity and risk of death. There are several molecules present in blood associated with immune cellular response, inflammation, and oxidative stress that could be used as severity markers in respiratory viral infections such as COVID-19. However, there is a lack of clinical studies evaluating the role of oxidative stress-related molecules including glial fibrillary acidic protein (GFAP), the receptor for advanced glycation end products (RAGE), high mobility group box-1 protein (HMGB1) and cyclo-oxygenase-2 (COX-2) in COVID-19 pathogenesis. AIM: To evaluate the role of oxidative stress-related molecules in COVID-19. METHOD: An observational study with 93 Brazilian participants from September 2020 to April 2021, comprising 23 patients with COVID-19 admitted to intensive care unit (ICU), 19 outpatients with COVID-19 with mild to moderate symptoms, 17 individuals reporting a COVID-19 history, and 34 healthy controls. Blood samples were taken from all participants and western blot assay was used to determine the RAGE, HMGB1, GFAP, and COX-2 immunocontent. RESULTS: We found that GFAP levels were higher in patients with severe or critical COVID-19 compared to outpatients (p = 0.030) and controls (p < 0.001). A significant increase in immunocontents of RAGE (p < 0.001) and HMGB1 (p < 0.001) were also found among patients admitted to the ICU compared to healthy controls, as well as an overexpression of the inducible COX-2 (p < 0.001). In addition, we found a moderate to strong correlation between RAGE, GFAP and HMGB1 proteins. CONCLUSION: SARS-CoV-2 infection induces the upregulation of GFAP, RAGE, HMGB1, and COX-2 in patients with the most severe forms of COVID-19.


Subject(s)
COVID-19/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Child , Cyclooxygenase 2/blood , Cyclooxygenase 2/metabolism , Female , Glial Fibrillary Acidic Protein/blood , Glial Fibrillary Acidic Protein/metabolism , HMGB1 Protein/blood , HMGB1 Protein/metabolism , Healthy Volunteers , Humans , Inflammation/blood , Inflammation/diagnosis , Inflammation/immunology , Inflammation/virology , Male , Middle Aged , Oxidative Stress/immunology , Receptor for Advanced Glycation End Products/blood , Receptor for Advanced Glycation End Products/metabolism , SARS-CoV-2/immunology , Severity of Illness Index , Up-Regulation/immunology , Young Adult
8.
Horm Mol Biol Clin Investig ; 43(3): 353-355, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-1573640

ABSTRACT

OBJECTIVES: To evaluate the potential relationship between COVID-19 pandemic and mucormycosis outbreak. METHODS: PubMed, Embase, Cochrane Library and Google Scholar were searched for the term "COVID-19 and mucormycosis" up to May 31, 2021. RESULTS: After the second wave of COVID-19, the mucormycosis outbreak complicates the natural course of COVID-19. COVID-19 patients with uncontrolled diabetes mellitus with diabetic ketoacidosis, excessive glucocorticoid use, prolonged neutropenia, malnutrition and any underlying immunocompromised conditions are at risk of developing mucormycosis. CONCLUSIONS: Hyperglycaemia impairs the motility of phagocytes and also decreases the oxidative and non-oxidative mechanism of killing the causative pathogen. Chronic hyperglycemia also leads to the formation of advanced glycation end-products (AGE), which leads to cross-linking between key proteins of inflammation and connective tissue such as collagen which makes tissue susceptible to immunological dysregulation. The receptor for AGE (RAGE) is expressed on various inflammatory cells including neutrophils and its activation by AGEs leads to activation of many down signaling pathways which ultimately leads to impairment of the inflammatory response. Hyperglycemia also increases serum Nitric Oxide (NO), which decreases neutrophil motility and reduces the synthesis and release of various inflammatory mediators such as TNF-α and IL-1ß, IL-6. It also decreases the expression of adhesion molecules such as LFA-1 and ICAM-2, on neutrophils. Steroids cause immunosuppression majorly by inhibiting the NF-κB pathway which is a transcription factor involved in the synthesis of many immunological mediators such as Interleukins, cytokines, chemokines, etc., and various adhesion molecules.


Subject(s)
COVID-19 , Diabetes Mellitus , Hyperglycemia , Mucormycosis , COVID-19/complications , Collagen , Cytokines/metabolism , Diabetes Mellitus/epidemiology , Glucocorticoids , Glycation End Products, Advanced/metabolism , Humans , Hyperglycemia/epidemiology , Inflammation Mediators , Interleukin-6 , Lymphocyte Function-Associated Antigen-1 , Mucormycosis/epidemiology , NF-kappa B/metabolism , Nitric Oxide , Pandemics , Receptor for Advanced Glycation End Products/metabolism , Tumor Necrosis Factor-alpha
9.
Aging (Albany NY) ; 13(21): 23913-23935, 2021 11 03.
Article in English | MEDLINE | ID: covidwho-1502964

ABSTRACT

LianHuaQingWen (LHQW) improves clinical symptoms and alleviates the severity of COVID-19, but the mechanism is unclear. This study aimed to investigate the potential molecular targets and mechanisms of LHQW in treating COVID-19 using a network pharmacology-based approach and molecular docking analysis. The main active ingredients, therapeutic targets of LHQW, and the pathogenic targets of COVID-19 were screened using the TCMSP, UniProt, STRING, and GeneCards databases. According to the "Drug-Ingredients-Targets-Disease" network, Interleukin 6 (IL6) was identified as the core target, and quercetin, luteolin, and wogonin as the active ingredients of LHQW associated with IL6. The response to lipopolysaccharide was the most significant biological process identified by gene ontology enrichment analysis, and AGE-RAGE signaling pathway activation was prominent based on the interaction between LHQW and COVID-19. Protein-protein docking analysis showed that IL6 receptor (IL6R)/IL6/IL6 receptor subunit beta (IL6ST) and Spike protein were mainly bound via conventional hydrogen bonds. Furthermore, protein-small molecule docking showed that all three active ingredients could bind stably in the binding model of IL6R/IL6 and IL6ST. Our findings suggest that LHQW may inhibit the lipopolysaccharide-mediated inflammatory response and regulate the AGE-RAGE signaling pathway through IL6. In addition, the N-terminal domain of the S protein of COVID-19 has a good binding activity to IL6ST, and quercetin and wogonin in LHQW may affect IL6ST-mediated IL6 signal transduction and a large number of signaling pathways downstream to other cytokines by directly affecting protein-protein interaction. These findings suggest the potential molecular mechanism by which LHQW inhibits COVID-19 through the regulation of IL6R/IL6/IL6ST.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Drugs, Chinese Herbal/pharmacology , Glycation End Products, Advanced/metabolism , Interleukin-6/metabolism , Receptor for Advanced Glycation End Products/metabolism , SARS-CoV-2 , Antiviral Agents/pharmacology , COVID-19/immunology , Cytokine Receptor gp130/metabolism , Flavanones/pharmacology , Humans , Luteolin/pharmacology , Molecular Docking Simulation , Quercetin/pharmacology , Receptors, Interleukin-6/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Signal Transduction/drug effects , Signal Transduction/immunology , Spike Glycoprotein, Coronavirus/metabolism
10.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166186, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1446450

ABSTRACT

The soluble urokinase plasminogen activator receptor (suPAR) has been implicated in the pathogenesis of kidney diseases including primary and recurrent focal and segmental glomerulosclerosis (FSGS), diabetic nephropathy, and acute kidney injuries (AKI). Elevated serum suPAR concentration is a negative prognostic indicator in multiple critical clinical conditions. This study has examined the initial transduction steps used by suPAR in cultured mouse podocytes. We now report that the receptor for advanced glycation end-products (RAGE) co-immunoprecipitates with αV and ß3 integrin subunits, which have been previously shown to initiate suPAR signal transduction at the podocyte cell surface. siRNA knock-down of RAGE attenuated Src phosphorylation evoked by either suPAR or by glycated albumin (AGE-BSA), a prototypical RAGE agonist. suPAR effects on Src phosphorylation were also blocked by the structurally dissimilar RAGE antagonists FPS-ZM1 and azeliragon, as well as by cilengitide, an inhibitor of outside-in signaling through αV-integrins. FPS-ZM1 also blocked Src phosphorylation evoked by AGE-BSA. FPS-ZM1 blocked increases in cell surface TRPC6 abundance, cytosolic reactive oxygen species (ROS) and activation of the small GTPase Rac1 evoked by either suPAR or AGE-BSA. In addition, FPS-ZM1 inhibited Src phosphorylation evoked by serum collected from a patient with recurrent FSGS during a relapse. The magnitude of this inhibition was indistinguishable from the effect produced by a neutralizing antibody against suPAR. These data suggest that orally bioavailable small molecule RAGE antagonists could represent a useful therapeutic strategy for a wide range of clinical conditions associated with elevated serum suPAR, including primary FSGS and AKI.


Subject(s)
Integrin alphaVbeta3/metabolism , Podocytes/metabolism , Receptor for Advanced Glycation End Products/metabolism , Receptors, Urokinase Plasminogen Activator/metabolism , Signal Transduction/physiology , Animals , Cell Line , Humans , Kidney Diseases/metabolism , Mice , Reactive Oxygen Species/metabolism
11.
Int J Mol Sci ; 22(12)2021 Jun 13.
Article in English | MEDLINE | ID: covidwho-1273455

ABSTRACT

Inflammation is an old concept that has started to be considered as an important factor in infection and chronic diseases. The role of leukocytes, the plasmatic components, then of the mediators such as prostaglandins, cytokines, and, in recent decades, of the endothelium has completed the concept of the inflammation process. The function of the endothelium appeared to be crucial as a regulator or the initiator of the inflammatory process. Culture of human endothelial cells and experimental systems made it possible to define the molecular basis of inflammation in vascular diseases, in diabetes mellitus, atherosclerosis, vasculitis and thromboembolic complications. Advanced glycation end product receptor (RAGE), present on endothelial cells (ECs) and monocytes, participates in the activation of these cells in inflammatory conditions. Inflammasome is a cytosolic multiprotein that controls the response to diverse microorganisms. It is positively regulated by stimulator of interferon response CGAMP interactor-1 (STING1). Angiogenesis and thrombotic events are dysregulated during inflammation. ECs appear to be a protector, but also a possible initiator of thrombosis.


Subject(s)
Atherosclerosis/pathology , Endothelium, Vascular/metabolism , Thrombosis/pathology , Atherosclerosis/metabolism , Endothelium, Vascular/cytology , Humans , Inflammasomes/metabolism , Membrane Proteins/metabolism , Neovascularization, Physiologic , Nitric Oxide/metabolism , Receptor for Advanced Glycation End Products/metabolism , Thrombosis/metabolism
12.
Biomolecules ; 11(6)2021 06 12.
Article in English | MEDLINE | ID: covidwho-1270006

ABSTRACT

The receptor for advanced glycation-end products (RAGE) is a multiligand receptor with a role in inflammatory and pulmonary pathologies. Hyperactivation of RAGE by its ligands has been reported to sustain inflammation and oxidative stress in common comorbidities of severe COVID-19. RAGE is essential to the deleterious effects of the renin-angiotensin system (RAS), which participates in infection and multiorgan injury in COVID-19 patients. Thus, RAGE might be a major player in severe COVID-19, and appears to be a useful therapeutic molecular target in infections by SARS-CoV-2. The role of RAGE gene polymorphisms in predisposing patients to severe COVID-19 is discussed. .


Subject(s)
COVID-19/metabolism , Inflammation/metabolism , Oxidative Stress , Receptor for Advanced Glycation End Products/metabolism , Renin-Angiotensin System , Animals , COVID-19/genetics , COVID-19/pathology , Humans , Inflammation/genetics , Inflammation/pathology , Polymorphism, Genetic , Receptor for Advanced Glycation End Products/genetics , Risk Factors , SARS-CoV-2/physiology , Severity of Illness Index
13.
Int Immunopharmacol ; 98: 107806, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1240399

ABSTRACT

Coronavirus Disease 2019 (COVID-19), caused by the novel virus SARS-CoV-2, is often more severe in older adults. Besides age, other underlying conditions such as obesity, diabetes, high blood pressure, and malignancies, which are also associated with aging, have been considered risk factors for COVID-19 mortality. A rapidly expanding body of evidence has brought up various scenarios for these observations and hyperinflammatory reactions associated with COVID-19 pathogenesis. Advanced glycation end products (AGEs) generated upon glycation of proteins, DNA, or lipids play a crucial role in the pathogenesis of age-related diseases and all of the above-mentioned COVID-19 risk factors. Interestingly, the receptor for AGEs (RAGE) is mainly expressed by type 2 epithelial cells in the alveolar sac, which has a critical role in SARS-CoV-2-associated hyper inflammation and lung injury. Here we discuss our hypothesis that AGEs, through their interaction with RAGE amongst other molecules, modulates COVID-19 pathogenesis and related comorbidities, especially in the elderly.


Subject(s)
COVID-19/metabolism , Glycation End Products, Advanced , Inflammation Mediators/metabolism , Receptor for Advanced Glycation End Products/metabolism , SARS-CoV-2/pathogenicity , Age Factors , Animals , Anti-Inflammatory Agents/therapeutic use , COVID-19/mortality , COVID-19/virology , Cellular Senescence , Comorbidity , Host-Pathogen Interactions , Humans , Oxidative Stress , Prognosis , Risk Assessment , Risk Factors , Severity of Illness Index , Signal Transduction , COVID-19 Drug Treatment
14.
World J Gastroenterol ; 27(19): 2270-2280, 2021 May 21.
Article in English | MEDLINE | ID: covidwho-1239022

ABSTRACT

Compelling evidence supports the crucial role of the receptor for advanced glycation end-products (RAGE) axis activation in many clinical entities. Since the beginning of the coronavirus disease 2019 pandemic, there is an increasing concern about the risk and handling of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in inflammatory gastrointestinal disorders, such as inflammatory bowel diseases (IBD). However, clinical data raised during pandemic suggests that IBD patients do not have an increased risk of contracting SARS-CoV-2 infection or develop a more severe course of infection. In the present review, we intend to highlight how two potentially important contributors to the inflammatory response to SARS-CoV-2 infection in IBD patients, the RAGE axis activation as well as the cross-talk with the renin-angiotensin system, are dampened by the high expression of soluble forms of both RAGE and the angiotensin-converting enzyme (ACE) 2. The soluble form of RAGE functions as a decoy for its ligands, and soluble ACE2 seems to be an additionally attenuating contributor to RAGE axis activation, particularly by avoiding the transactivation of the RAGE axis that can be produced by the virus-mediated imbalance of the ACE/angiotensin II/angiotensin II receptor type 1 pathway.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Glycation End Products, Advanced , Humans , Peptidyl-Dipeptidase A/metabolism , Receptor for Advanced Glycation End Products/metabolism , Renin-Angiotensin System , SARS-CoV-2
15.
Clin Immunol ; 227: 108733, 2021 06.
Article in English | MEDLINE | ID: covidwho-1198654

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for many pathological processes, including altered vascular disease development, dysfunctional thrombosis and a heightened inflammatory response. However, there is limited work to determine the underlying cellular responses induced by exposure to SARS-CoV-2 structural proteins. Thus, our objective was to investigate how human arterial adventitial fibroblasts inflammation, thrombosis and diabetic disease markers are altered in response to Spike, Nucleocapsid and Membrane-Envelope proteins. We hypothesized that after a short-term exposure to SARS-CoV-2 proteins, adventitial fibroblasts would have a higher expression of inflammatory, thrombotic and diabetic proteins, which would support a mechanism for altered vascular disease progression. After incubation, the expression of gC1qR, ICAM-1, tissue factor, RAGE and GLUT-4 was significantly up-regulated. In general, the extent of expression was different for each SARS-CoV-2 protein, suggesting that SARS-CoV-2 proteins interact with cells through different mechanisms. Thus, SARS-CoV-2 protein interaction with vascular cells may regulate vascular disease responses.


Subject(s)
COVID-19/immunology , Cardiovascular Diseases/virology , Diabetes Mellitus/virology , Fibroblasts/metabolism , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Thrombosis/virology , Aorta/cytology , Aorta/metabolism , Cardiovascular Diseases/complications , Cardiovascular Diseases/immunology , Cardiovascular Diseases/metabolism , Carrier Proteins/metabolism , Cell Survival/immunology , Cell Survival/physiology , Complement System Proteins/immunology , Coronavirus Envelope Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Diabetes Mellitus/metabolism , Glucose Transporter Type 4/metabolism , Humans , Inflammation/metabolism , Inflammation/virology , Intercellular Adhesion Molecule-1/metabolism , Mitochondrial Proteins/metabolism , Receptor for Advanced Glycation End Products/metabolism , Thrombosis/complications , Thrombosis/metabolism
16.
Arterioscler Thromb Vasc Biol ; 41(2): 614-627, 2021 02.
Article in English | MEDLINE | ID: covidwho-1105574

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide and the pandemic has yet to wane. Despite its associated significant morbidity and mortality, there are no definitive cures and no fully preventative measures to combat SARS-CoV-2. Hence, the urgency to identify the pathobiological mechanisms underlying increased risk for and the severity of SARS-CoV-2 infection is mounting. One contributing factor, the accumulation of damage-associated molecular pattern molecules, is a leading trigger for the activation of nuclear factor-kB and the IRF (interferon regulatory factors), such as IRF7. Activation of these pathways, particularly in the lung and other organs, such as the heart, contributes to a burst of cytokine release, which predisposes to significant tissue damage, loss of function, and mortality. The receptor for advanced glycation end products (RAGE) binds damage-associated molecular patterns is expressed in the lung and heart, and in priming organs, such as the blood vessels (in diabetes) and adipose tissue (in obesity), and transduces the pathological signals emitted by damage-associated molecular patterns. It is proposed that damage-associated molecular pattern-RAGE enrichment in these priming tissues, and in the lungs and heart during active infection, contributes to the widespread tissue damage induced by SARS-CoV-2. Accordingly, the RAGE axis might play seminal roles in and be a target for therapeutic intervention in SARS-CoV-2 infection.


Subject(s)
COVID-19/metabolism , Receptor for Advanced Glycation End Products/metabolism , Adipocytes/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/complications , COVID-19/epidemiology , Cytokine Release Syndrome , Diabetes Complications/metabolism , Diabetes Mellitus/metabolism , Disease Models, Animal , Endothelium, Vascular/metabolism , Humans , Interferon Regulatory Factor-7/metabolism , Lung/metabolism , Myocardium/metabolism , NF-kappa B/metabolism , Obesity/complications , Obesity/metabolism , Pandemics , SARS-CoV-2
17.
Life Sci ; 272: 119251, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1096150

ABSTRACT

A novel infectious disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was detected in December 2019 and declared as a global pandemic by the World Health. Approximately 15% of patients with COVID-19 progress to severe pneumonia and eventually develop acute respiratory distress syndrome (ARDS), septic shock and/or multiple organ failure with high morbidity and mortality. Evidence points towards a determinant pathogenic role of members of the renin-angiotensin system (RAS) in mediating the susceptibility, infection, inflammatory response and parenchymal injury in lungs and other organs of COVID-19 patients. The receptor for advanced glycation end-products (RAGE), a member of the immunoglobulin superfamily, has important roles in pulmonary pathological states, including fibrosis, pneumonia and ARDS. RAGE overexpression/hyperactivation is essential to the deleterious effects of RAS in several pathological processes, including hypertension, chronic kidney and cardiovascular diseases, and diabetes, all of which are major comorbidities of SARS-CoV-2 infection. We propose RAGE as an additional molecular target in COVID-19 patients for ameliorating the multi-organ pathology induced by the virus and improving survival, also in the perspective of future infections by other coronaviruses.


Subject(s)
COVID-19/complications , Drug Discovery , Multiple Organ Failure/etiology , Multiple Organ Failure/prevention & control , Receptor for Advanced Glycation End Products/antagonists & inhibitors , SARS-CoV-2/physiology , Animals , COVID-19/metabolism , COVID-19/pathology , Humans , Molecular Targeted Therapy , Multiple Organ Failure/metabolism , Multiple Organ Failure/pathology , Receptor for Advanced Glycation End Products/metabolism , Renin-Angiotensin System/drug effects , SARS-CoV-2/drug effects , Signal Transduction/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL